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Simple graphs and degree sequences

Undirected Directed
G=(V,E) é‘:(v,A)
V1 U1
(0 U2
V4 U4
V3 U3
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Split graphs

A graph is split if it can be partitioned into a clique and an
independent set:

* Subset of perfect graphs

* Superset of threshold graphs

* Only chordal graphs whose complements are also
chordal

* (2K2,C4,Cs)-free

* A graph is split if and only if its degree sequence
satisfies a particular ErdOs-Gallai inequality with equality
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Graphic sequences

Theorem [Erdos-Gallai (1961)]:

Let d be a non-increasing integer sequence. Then d is graphic if and only if
ZL‘;Q d; is even and for k=1,...,|V],

\4

k—1)+ Z min{k, d}>2d

j=k+1

Tuesday, July 3, 12



Graphic sequences

Theorem [Erdos-Gallai (1961)]:

Let d be a non-increasing integer sequence. Then d is graphic if and only if
ZL‘;Q d; is even and for k=1,...,|V],

\4

k—1)+ Z min{k, d}>2d.

j=k+1

Slack sequence

[V

k(k Z min{k, d; } — Zd

1=k-+1

Sk
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Characterizations of split graphs

Definition [Foldes and Hammer (1977)]:

A graph G is split if and only if V(G) is a disjoint union of two sets C' and
I such that C is a clique and [ is an independent set. In this case, X = {C, I}
is called a split partition.
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Characterizations of split graphs

Definition [Foldes and Hammer (1977)]:

A graph G is split if and only if V(G) is a disjoint union of two sets C' and
I such that C is a clique and [ is an independent set. In this case, X = {C, I}
is called a split partition.

Let d be a non-increasing integer sequence. Define the corrected Durfee
number m(d) given by

m(d) = max{k : dp > k — 1}.
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Characterizations of split graphs

Definition [Foldes and Hammer (1977)]:

A graph G is split if and only if V(G) is a disjoint union of two sets C' and
I such that C is a clique and [ is an independent set. In this case, X = {C, I}
is called a split partition.

Let d be a non-increasing integer sequence. Define the corrected Durfee
number m(d) given by

m(d) = max{k : dp > k — 1}.

Theorem [Hammer and Simeone (1981)]:

If d is the degree sequence of a graph G, then G is split if and only if s,,, = 0.
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Digraphic sequences

Permutations:
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Digraphic sequences

Permutations:

Lexicographic ordering
(pref. to out-degree)
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Digraphic sequences

Permutations:

Lexicographic ordering Lexicographic ordering
(pref. to out-degree) (pref. to in-degree)
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Digraphic sequences

Permutations:

Lexicographic ordering
(pref. to out-degree)

|
RN
O =
—_— O
—
Do DO
N
SH
|

s
]

O i

Lexicographic ordering
(pref. to in-degree)

— O =

—_— O
N
|
|
RN
N DN
—
— O

(\W)
N—"
~
|
N
S
W)
(\W)
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Digraphic sequences

Theorem [Fulkerson (1960)]:

An integer-pair sequence d is digraphic if and only if 27],\;1 d = Zf,i1 d;
and for k=1,..., N,

k N k
Y min[df,k—1]+ ) min[d/ k] > d.
=1 1=1

1=k+1
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Digraphic sequences

Theorem [Fulkerson (1960)]:

An integer-pair sequence d is digraphic if and only if Zf\il d = Zf\;l d;
and for k=1,..., N,

k N k
Y min[df,k—1]+ ) min[d/ k] > d.
=1 1=1

1=k+1

Slack sequences

|

k N
Sp = Zmin[c@_,k — 1] + Z min[d; , k] —
i=1 i=k+1

2

~. ~.
] Mw ] Mw
= —_

k N
S, = Zmin[d;r,k — 1] + Z min[d;", k] —
i=1 i=k-+1
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Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if
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Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if

(1) X¥ is a clique and X© is an independent set,

Tuesday, July 3, 12



Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if

(1) X¥ is a clique and X© is an independent set,
(#) G[X 1] and G[X | are arbitrary subgraphs,

Tuesday, July 3, 12



Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if

(1) X¥ is a clique and X© is an independent set,
(#) G[X 1] and G[X | are arbitrary subgraphs,
(i1) there are all possible arcs from X* to X* U X~ and from X* to X,
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Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if

(1) X* is a clique and XY is an independent set,

(i4) G[X*] and G[X | are arbitrary subgraphs,

(447) there are all possible arcs from X+ to X* U X~ and from X+ to X~
(iv) there are no arcs from X~ to X U X" or from X° to X .
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Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if

(1) X¥ is a clique and X© is an independent set,

(i4) G[X*] and G[X | are arbitrary subgraphs,

(447) there are all possible arcs from X+ to X* U X~ and from X* to X,
(<v) there are no arcs from X~ to X+ U X" or from X" to X .

A digraph G is a split digraph if and only if it has a nontrivial split partition.
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Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of G if and only if

(1) X¥ is a clique and X© is an independent set,

(i4) G[X*] and G[X | are arbitrary subgraphs,

(447) there are all possible arcs from X+ to X* U X~ and from X* to X,

(<v) there are no arcs from X~ to X+ U X" or from X" to X .

A digraph G is a split digraph if and only if it has a nontrivial split partition.

X:I:

X Xt x— X

X+ /1 % IR
XT 1 * 1 *
X~ * 0 * 0
Xo\* 0 * O/
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Structural characterization of split digraphs

Definition [Split digraph]:

Given a digraph G, a vertex partition X = (X*, XT, X, X0} (with possible
empty sets) is called a split partition of GG if and only if

(1) X¥ is a clique and X© is an independent set,

(i4) G[X*] and G[X | are arbitrary subgraphs,

(447) there are all possible arcs from X+ to X* U X~ and from X* to X,
(<v) there are no arcs from X~ to X+ U X" or from X" to X .

A digraph G is a split digraph if and only if it has a nontrivial split partition.

Theorem [LaMar]:

If d is the degree sequence of a digraph C_j, then G is split if and only if
min{sy,...,58_1,81,..-,8y_1} = 0.
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Splittance of an undirected graph

Definition [Graph splittance]:

Define the splittance o(G) of G to be the minimum number of edges to
add to or remove from GG in order to obtain a split graph.
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Splittance of an undirected graph

d=(43333)

|l 2 3 4 5

Definition [Graph splittance]:

Define the splittance o(G) of G to be the minimum number of edges to
add to or remove from GG in order to obtain a split graph.
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Splittance of an undirected graph

d=(43333)

|l 2 3 4 5

o(d)=(8421

o I 2 3

)

SN
v N

Tuesday, July 3, 12



Splittance of an undirected graph

Corrected Durfee number:
d:(43333) m(d) = max{k :dy > k — 1}
| 2 3 4 5
g\
m(d)

Theorem [Hammer and Simeone (1981)]:

o(G) = mkin or(d) = 0, (d)
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Splittance of an undirected graph

d=(43333)

|l 2 3 4 5

s=(001220)
O I 2 3 4 5

Corrected Durfee number:

m(d) = max{k :dp > k — 1}

Theorem [Hammer and Simeone (1981)]:

1

0(G) = minog(d) = o, (d) = §sm(d)

k
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Splittance of an undirected graph

Corrected Durfee number:
d:(43333) m(d) = max{k :dy > k — 1}
| 2 3 4 5
N
m(d)
v
o(d)= (842112
O |l 2 3 4 5
|

s=(001220)
O I 2 3 4 5

Theorem [Hammer and Simeone (1981)]:

7(G) = min oy (d) = 7yn(d) = %sm(d)
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Splittance of an undirected graph

d=(43333)

|l 2 3 4 5

o(d) = (

o QO
—| =~
ol DN €«
w| —
— ||
al DY

s=(001220)
O I 2 3 4 5

Corrected Durfee number:

m(d) = max{k :dp > k — 1}

Theorem [Hammer and Simeone (1981)]:

7(G) = min oy (d) = 7yn(d) = %sm(d)
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Splittance of an undirected graph

d=(43333)
\
m(d)
v
o(d) = (84211 2)
C |

s=(001220)
O I 2 3 4 5

Corrected Durfee number:

m(d) = max{k :dp > k — 1}

Theorem [Hammer and Simeone (1981)]:

1

0(G) = minog(d) = o, (d) = §sm(d)

k
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Splittance of an undirected graph

Corrected Durfee number:
d:(43333) m(d) = max{k :dy > k — 1}
| 2 3 4 5
\
m(d)
v
o(d)=(842112) | C
Ol 2 3 4||5
C |

5=(001220) NOT SPLIT!

Theorem [Hammer and Simeone (1981)]:

7(G) = min oy (d) = 7yn(d) = %sm(d)
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Splittance of a directed graph

Definition [Digraph splittance]:

Define the splittance o(G) of G to be the minimum number of arcs to add
to or remove from G in order to obtain a split digraph.
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Splittance of a directed graph

i_ (23410
1 2 2 2 3
/Il 2 3 4 5

L4 < L2
v
L5 I3

Definition [Digraph splittance]:

Define the splittance o(G) of G to be the minimum number of arcs to add
to or remove from G in order to obtain a split digraph.
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Splittance of a directed graph

i_(2 3410
“\1 2 2 2 3
/Il 2 3 4 5
10 75 3 1 0 1 L2
6 4 2 1 0 0
- 3 210 0 1
SA=1 17 111 2 3 - A
0 2 3 4 6
0 3 5 7 10
L1

Definition [Digraph splittance]:

Define the splittance o(G) of G to be the minimum number of arcs to add

to or remove from G in order to obtain a split digraph.
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Splittance of a directed graph

. 2
d_(l

o DN QR

LN R =

O = w o S

Theorem [LaMar]:

RN = = DN Ot

T WO MmO = W
NI =~ DN OO =

O'(é) =

4 1 0
2 2 3
3 4 5

= O W = O X

min

(k,1)Z{(IN,0),(0,N)}

Sk

X4 < X2
\ 4
x5\
L1
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Splittance of a directed graph

i_ (23410
1 2 2 2 3
/Il 2 3 4 5
[ =4
10 75 3 1 0
6 4 2 1 0 0
; 3 2 1 0 [0 1
SA=1 17 111 2 3
0 2 3 4 6
0 3 5 7 10

X= =Va,nB, = {r2, 23}
X“" — VAQ\B4 — @

a = 32145) .Az
b=((H3241) By

X = VB4\A2 — {CB4,£B5}
X = V{l,...,N}\A2uB4 — {5131}
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Splittance of a directed graph

i_ (23410
1 2 2 2 3
Il 2 3 4 5
[ =4
10 75 3 1 0
6 4 2 1 0 0
A 3 21 0 [0 1
SA=1 17 111 2 3
0 2 3 4 6
0 3 5 7 10

X= =Va,nB, = {r2, 23}

X = VB4\A2 — {$4,£U5}

X“" — VAQ\B4 — @

X = V{l,...,N}\AQUB4 — {5131}
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Splittance of a directed graph

J_<2 3 4 1 o> a=([32]145) As
1 2 2 2 3 b=G3241) By
/|l 2 3 4 5
[ =4
10 7 5 3 1 0
6 4 2 1 0 0
. 3 2 1 010 1 k=2
S =117 111 2 3
0 2 3 4 6
0 3 5 7 10

Definition [Split partition measure]:

o(X)=|XF|(k-1)+| X Jk+ > d;— > df
Xtuxo XFTUXx+

Tuesday, July 3, 12
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Splittance of a directed graph

J—(z 3 4 1 O> §s=(000100)
1 2 2 2 3 s=(011000)
| 2 3 4 5
10 75 3 1 0 e~ 2
6 4 2 1 0 O
e 3 2 1 0 0 1
SA=1 17 111 2 3 - A
0 2 3 4 6
0 3 o 7 10

Theorem [LaMar]:

5 = mlin Sk and s = mkin Sk
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Splittance of a directed graph

J—(z 3 4 1 O> s=(000100)

I 2 2 2 3 s=(011000)
| 2 3 4 5
10 7 5 3 1 [0 \— 44 L2
6 4 2 1 0 [0 |—

5 3 2 1 0 0 1 [|—

S(d) = -

() 1 1 @2 3 |— A
0 2 3 4 6 |
0 3 5 7 10 /—

Theorem [LaMar]:

5 = mlin Sk and s = mljn Sk
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Splittance of a directed graph

J—(z 3 4 1 0> s=(000100)
I 2 2 2 3 s=(011000)
I 2 3 4 5
10 7 5 3 1 0 t14 2
6 4 2 1 0 [0 :><
- 3 2 1 [0][0] 1
SA=1"17 1m@m1 2 3 - A
0 2 3 4 6
0] 1] 3 5 7 10
R !

Theorem [LaMar]:
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Splittance of a directed graph

J—(z 3 4 1 O> s=(0]0 01 0{0)
I 2 2 2 3 s=(0[1 10 0]0)
| 2 3 4 5
10 75 3 1 0 T4 2
6 4 2 1 0 0
5 3 2 1 0 0 1
SA=1 17 111 2 3 - A
0 2 3 4 6
0 3 o 7 10

L1

Theorem [LaMar]:

o(G) = min{51,...,5N_1,81,---,5y_1}
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Splittance of a directed graph

CZ_(Q 3 4 1 O> s=(0]0 01 0{0)
I 2 2 2 3 s=(0[1 10 0]0)
| 2 3 4 5
10 75 3 1 0 144 2
6 4 2 1 0 O :><
- 3 2 1 0 0 1
SA=1 17 111 2 3 - A
0 2 3 4 06 ’\\A
1
C 0P T SPLIT! :

Theorem [LaMar]:

o(G) = min{51,...,5N_1,81,---,5y_1}
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Splittance of a directed graph - directed extensions

Undirected

d=(43333)

o(d)= (84211 2)

s=(001220)
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Splittance of a directed graph - directed extensions

Undirected Directed
A 4 3 3 3 3
d=(43333) d_<4 2 a o 3>
16 12 9 6 3 O
12 &8 6 4 2 0
A 9 6 4 3 2 1
o(d)=(842112) S(d) = 6 4 3 9 9 9
3 2 2 2 2 3
0 O 1 2 3 4
s=(001220
s=(001220) ( _ )
s=(001220)
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Splittance of a directed graph - directed extensions

Undirected Directed
A 4 3 3 3 3
d=(43333) d_<4 2 a o 3>
100 12 9 6 3 0
12 |8 6 4 2 0
A 9 6 (4] 3 2 1
o(d)=(842112) S(d) = 6 4 303 92 9
3 2 2 2 12| 3
0 0O 1 2 3 |4
s=(001220
s=(001220) ( _ )
s=(001220)
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Splittance of a directed graph - directed extensions

Undirected

d=(43333)

o(d)=(842112)

710
s=(001220)

Directed
i_ (43333
o 4 3 3 3 3
100 12 9 6 3 0
12 |8 6 4 2 O
A 9 6 4] 3 2 1
S(d)_ § 4 3 (2] 2 2
3 2 2 2 12| 3
0 0O 1 2 3 |4
=
R
s=(001220
s=(001220)
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Splittance of a directed graph - directed extensions

Undirected Directed
QN \
d—4Q\3 d=( % SNAV
6{% ) - 45?\8 3 3
$ 16 12 9 6 3 0
12 [8] 6 4 2 0
A 9 6 [4] 3 2 1
o(d)=(842112) | SA=| o , S5 5 o
3 2 2 21[2] 3
0 0 1 2 3[4
— 0
# 0 B
v s=(001220)
s=(001220)
s=(001220)
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Canonical split decomposition

>, = set of splitted graphs

[' = set of simple graphs

Define the composition operator o : ¥ xI' — I" such that if (G, C,I) € ¥ and
H € T" with adjacency matrix A, the graph (G, C,I) o H has adjacency matrix

C I H
C /1 x 1
1 x 0 0
H\1 0 A
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Canonical split decomposition

>, = set of splitted graphs

I' = set of simple graphs

Define the composition operator o : ¥ xI' — I" such that if (G, C,I) € ¥ and
H € T" with adjacency matrix A, the graph (G, C,I) o H has adjacency matrix

C I H
C /1 x 1
1 x 0 0
H\1 0 A

Canonical Graph Decomposition [Tyshkevich (2000)]:

Every graph G can be represented as a composition
G = (Gla C117]—1) ©---0 (Gka Clmlk) O GO

of indecomposable components. Here (G;,C;, I;) are indecomposable splitted
osraphs and Gy is an indecomposable graph.
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Canonical split decomposition of digraphs?

Define the composition operator o : > x I' — I'" such that if (é, S) € ¥ and
H € T with adjacency matrix A, the graph (G,S) o H has adjacency matrix

X Xt X- XY H

Xi/1 X 1 X 1\
XT 1 * 1 « 1
X * 0 * 0 0
X0 * 0 * 0 0
H \1 0 1 0 A

Tuesday, July 3, 12
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Canonical split decomposition of digraphs!?

Define the composition operator o : > x I' — I'" such that if (C_f, S) € ¥ and
H € T' with adjacency matrix A, the graph (G,S) o H has adjacency matrix

X Xt X- XY H

Xi(1 X 1 k1)
X" 1 * 1 « 1
X * 0 * 0 0
X0 * 0 * 0 0
7 \1 0 1 0 A

Conjecture [Canonical Digraph Decomposition]|:

Every digraph G can be represented as a composition
é — (61781) ©---0 (ékask) O éO

of indecomposable components. Here (éi,Si) are indecomposable splitted di-
graphs and Gy is an indecomposable digraph.

Tuesday, July 3, 12
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Realizing graphic and digraphic sequences

Theorem [Havel-Hakimi (1962)]:

~ Let d be a non-increasing integer sequence. Then d is graphic if and only if
d is graphic, where for some k we have

(0 for 1 = k
CZ':< d —1 {fOI‘iIl,...,dk if k> dy
’ ‘ fore=1,....k—1,k+1,...,d,+1 if k£ <dj
| d; otherwise.
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Realizing graphic and digraphic sequences

Theorem [Havel-Hakimi (1962)]:

~ Let d be a non-increasing integer sequence. Then d is graphic it and only if
d is graphic, where for some k£ we have

(0 for 1+ =k
CZ':< q. 1 {f()l”il,...,dk if k> dj
' ' fore=1,.... k=1, k+1,...,dp+1 1if k <dj
| d; otherwise.

Theorem [Kleitman-Wang (1972)]:

Let d = (d*,d ™) be an integer-pair sequence that is non-increasing relative
to the lexicographical ordering, giving preference to the out-degree. Then d is
digraphic if and only if d is digraphic, where for some £ we have

A o fori=1,...,d, it k>d,
df = ¢ fori=1,....,k—1,k+1,...,d, +1 ifk<d
d;r otherwise.

cZi_ _ {O for 1 = k

d, otherwise.
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
vy v2 vy v2 vV V)¢V
v v
wl‘ ‘wz w) w2 v3 v3
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
'Ul.' ..‘02 1 v2 Uy ——p U2 V14— 12
wy w2 w) w2 U3 U3
Example:
2 1 1 1
4= ( 2 1 1 1 )
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch

3-cycle reorientation

V) ——p U2 UV 4¢——TU2

el 74
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch
vy v vl v2
Lo = W2
Example:
2 1 1 1
4= ( 2 1 1 1)

Theorem [Rao et al. (1996)]:

The meta-graph (); is connected.

3-cycle reorientation

v ————p U2 V) 4¢——V2

el 74
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
'01.' '.‘02 1{1 1{2 L R L V) 4¢—7V2
> a v v
wy weo w) w2 U3 v3
0 1 0 1 0 0 1 1
) 1 0 0 O 1 0 0 O
Example: 1 0 0 0 1 0 0 0
0010 v, ?\ 01 00
2 1 1 1
d =
2 1 1 1

Theorem [Rao et al. (1996)]:

The meta-graph {); is connected. < \
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
'01.' '.‘02 1{1 1{2 L R L V) 4¢—7V2
> a v v
wy weo w) w2 U3 v3
01 0] 1 010 1] 1
) 1 0 0 O 1 0 0 O
Example: 1 0 0 0 1 0 0 0
00 1]0 v, ?\ 0 {1 0]oO
2 1 1 1
d =
2 1 1 1

Theorem [Rao et al. (1996)]:

The meta-graph {); is connected. < \
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
vy v2 1{1 1{2 L R L V) 4¢—7V2
: v
wl’ ‘w2 11’1 w2 U3 v3
0 1 0 1
. 1 0 0 O
Example. 1 0 0 0
0O 0 1 O

(211 ) /Eﬁ ?\

Theorem [Rao et al. (1996)]:

The meta-graph €2, is connected. \ / 01 1 0
1 0 0 0
0 0 0 1
1 0 0 O
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
vy v2 1{1 1{2 L R L V) 4¢—7V2
: v
wl’ ‘w2 11’1 w2 U3 v3
O 1 (0 1
. 1 0 0 0
Example. 11 o lo o
010 (1 O

2 1 1 1 Q ?
4= ( 2 1 1 1 ) / \
Theorem [Rao et al. (1996)]:

The meta-graph {); is connected. \\g: \

0 1 (1 O
1 0 0 0
0] 0 |10 1
1{ 0 {0 O
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Uniform sampling algorithms » Random walks

Random walk on set of realizations:

2-switch 3-cycle reorientation
vy v v v2 vl V2 Vie——U2
}". ..'4 v v
w) wo w) w2
Example:
2 1 1 1
d =
2 1 1 1

Theorem [Rao et al. (1996)]:

The meta-graph (); is connected.
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Uniform sampling algorithms » Importance sampling
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Uniform sampling algorithms » Importance sampling
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Uniform sampling algorithms » Importance sampling

2 1 1 1
d_(2111>

h%

by
\

?

<

Algorithm

/
=

%
N

N
\
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Uniform sampling algorithms » Importance sampling

| =
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Uniform sampling algorithms » Importance sampling
11 1
11 1

v

1 1
\6 6
1 1
/ <« Algorithm — >\V
1 1
6 6

™

* Blitzstein and Diaconis, “Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees.”
Internet Mathematics. 201 | Mar. 9;6(4):489-522. (remained unpublished for 6 years)

* del Genio et al,“Efficient and exact sampling of simple graphs with given arbitrary degree sequence.” PLoS ONE. 2010 Mar. 31;5(4):1-7.
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Uniform sampling algorithms » Importance sampling

s

'}7 <_A.gomhm\
™

In general, if we create n networks éi, each with creation probability p;, and
we're interesting in some network measure X; = f(G;), then the sample mean

is given by )
_ e
%o TiiwXe
D i1 Wi

where w; = -
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Uniform sampling of realizations

Theorem [Rao et al. (1996)]:

The meta-graph (); is connected.
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Uniform sampling of realizations

Theorem [Rao et al. (1996)]: /V\—/?\
The meta-graph €2, is connected. \V\ /\ "/p
™\

Theorem [LaMar / Berger and Miiller-Hannemann]:

Q) = (V, &) is disconnected if and only if d is C§-anchored.
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Uniform sampling of realizations

Theorem [Rao et al. (1996)]: /V'\—/?\
The meta-graph €2, is connected. \17\ /\ "/p
™\

Theorem [LaMar / Berger and Miiller-Hannemann]:

Q) = (V, &) is disconnected if and only if d is C§-anchored.

(11 I
11 1
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Uniform sampling of realizations

Theorem [Rao et al. (1996)]: /V\*/?\
/\

The meta-graph (); is connected.

Theorem [LaMar / Berger and Miiller-Hannemann]:

Q) = (V, &) is disconnected if and only if d is C§-anchored.
1 7
d =
1
v.

Corollary:
Qg ~ Q[V(Ga)] x (%71 K2),

I 1
I 1

where (G5 is one connected component of €2, and k denotes the number of
anchored 3-cycles.
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Uniform sampling of realizations

Theorem [Rao et al. (1996)]: /VQ?\
/\

The meta-graph (); is connected.

Theorem [LaMar / Berger and Miiller-Hannemann]:

Q) = (V, &) is disconnected if and only if d is C§-anchored.

T1—pT9 : \

I Ty— pI5 -
> :

T3 I/
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('s-anchored degree sequences

Forcibly H -digraphic:

Given a degree sequence d and digraph H we say ¢ d is for(:1bly H -dlgraphlc
if and only if for all G € R(d), there is a subgraph H’ C G such that H' =~ H.
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('s-anchored degree sequences

Forcibly H -digraphic:

Given a degree sequence d and digraph H we say ¢ d is for(:1bly H -dlgraphlc
if and only if for all G € R(d), there is a subgraph H’ C G such that H' =~ H.

H-anchored:

Given a digraph H , we will call a degree sequence d H-anchored if it is
forcibly H-digraphic and there exists a nonempty set of coordinates J(H),

called an H-anchor set, such that for every coordinate i € J(H) and every
G € R(d), there is an induced subgraph H' C G with H' = H and v; € V(H').
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('s-anchored degree sequences

Forcibly H -digraphic:

Given a degree sequence d and digraph H we say ¢ d is formbly H -dlgraphlc
if and only if for all G € R(d), there is a subgraph H’ C G such that H' =~ H.

H-anchored:

Given a digraph H , we will call a degree sequence d H-anchored if it is
forcibly H-digraphic and there exists a nonempty set of coordinates J(H),

called an H-anchor set, such that for every coordinate i € J(H) and every
G € R(d), there is an induced subgraph H' C G with H' = H and v; € V(H').

Example (Cs-anchored): /Q"’ _?\

(2111 N
21 11

N\
Y
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Structural characterization of 53-anchored digraphs

Examples:
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Structural characterization of C3-anchored digraphs

Examples:
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Structural characterization of 53-anchored digraphs

Theorem [LaMar]:

G is a Cs3-anchored digraph if and only if
G~ (H,S)oF,

where (ﬁ ,S) is a splitted digraph and F, are the indecomposable digraphs
defined previously.
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Structural characterization of C3-anchored digraphs

Theorem [LaMar]: 7 7
S . &
GG is a ('s-anchored digraph if and only if U\ U.\4‘
é:(ﬁ,S)oﬁi l/ \i/

where (ﬁ ,S) is a splitted digraph and F, are the indecomposable digraphs
defined previously.
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Structural characterization of C3-anchored digraphs

Theorem [LaMar]: 7 7
S . &
GG is a ('s-anchored digraph if and only if U\ U.\4‘
C_j:(ﬁ,S)oﬁi l/ \i/

where (ﬁ ,S) is a splitted digraph and 15; are the indecomposable digraphs
defined previously.

X Xt X- XY F

X+ /1 * 1 x 1
Xt ( 1 * 1 * 1\
X~ * 0 * 0 0
X0 * 0 * 0 0
F \1 0 1 0 e
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Structural characterization of C3-anchored digraphs

Theorem [LaMar]: 7 7
S . &
GG is a ('s-anchored digraph if and only if U\ U.\4‘
é:(ﬁ,S)oﬁi l/ \i/

where (ﬁ ,S) is a splitted digraph and 15; are the indecomposable digraphs
defined previously.

G is 5; -anchored < F’; — 63

X Xt X- XY F

X+ /1 * 1 x 1
Xt ( 1 * 1 * 1\
X~ * 0 * 0 0
X0 * 0 * 0 0
F \1 0 1 0 e
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Degree sequence characterization of C%-anchored digraphs

Theorem [LaMar]:

The degree sequence d is Cs-anchored if and only if for J = {j1,.. . Jn} @
set of indices with 3 <n < N — 1 and (k,l) > (0,0) an index pair, d satisfies
one of the three cases

(Z) n:3ané.dj1:dj2:dj3:(l+1,k+1)

(Z’L) n>3ané.dj1 :(l—l—n—Q,k—l—n—Z), dj ::djn:(l—l—l,k—l—l)
(ZZZ) n>3&ncd31::djn_lz(l—l—n—Q,k—kn—Q), Jn:(l—l—l,k—l—l)
with

(djys -5 dj,) = (drsts - disn) = (dyas -5 diyn)

and the slack sequences satistying

(07 L..., 1, O) — (gka Sk+1s- -+ Sk+n—1; 5k—|—n) — (§l7§l—|—17 e 7§l—|—n—17§l—|—n)'

Tuesday, July 3, 12 28



Degree sequence characterization of C%-anchored digraphs

Theorem [LaMar]:

The degree sequence d is Cs-anchored if and only if for J = {j1,.. . Jn} @
set of indices with 3 <n < N — 1 and (k,l) > (0,0) an index pair, d satisfies

one of the three cases .
C'5-anchored

(Z) n:3ané.dj1:deZdj3:(l+1,k+1)

(Z’L) n>3ané.dj1 :(l—l—n—Q,k—l—n—Q), d]2::djn:(l—|—1,k—|—1)

(ZZZ) n > 3 and djl :'”:djn—l :(l—l—n—2,k+n—2), djn :(l—l—l,k—l—l)
with

(djys -5 dj,) = (drsts - disn) = (dyas -5 diyn)

and the slack sequences satistying

(Oa L..., 1, O) — (gka Sk+1s- -+ Sk+n—1; 5k—|—n) — (§l7§l—|—17 e 7§l—|—n—17§l—|—n)'
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Partial order of majorization and split partitions

1 and v partitions of 2m if and only if

2m 2m
E i = E Vi
1=1 1=1
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Partial order of majorization and split partitions

1 and v partitions of 2m if and only if

2m 2m
E i = E Vi
1=1 1=1

u majorizes v (u > v) if and only if

k k
ZM@ ZZML‘, for k=1,...,2m
i=1 i=1
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Partial order of majorization and split partitions

1 and v partitions of 2m if and only if

2m 2m
D M=) v
1=1 =1

u majorizes v (u > v) if and only if

k k
Zﬂi ZZVZ', for k=1,...,2m
i=1 i=1

If u > v and

e [, graphic, then v graphic

e v split, then u split

Tuesday, July 3, 12

29



Partial order of majorization and split partitions

R.Merris | Ewropean Journal of Combinatorics 24 (2003) 413430

p and v partitions of 2m if and only if w%mm
— BT
2m 2m w)/ﬁﬁm\w/gim
D M=) v P T
1= = . /@"\gp/?"“
& \__ ) -
w majorizes v (> v) if and only if 7 \?p/?m
k k ﬁ\a,/? !l',, [
~ T~
Z/%ZZVZ-, for k=1,...,2m /l'\,/!"
i=1 i=1 B /|
It > v and \@/Em

e [, graphic, then v graphic

e v split, then u split

Fig. 2. Hasse diagram for Par(10).
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Thank you!




